Regularization of P0-functions in Box Variational Inequality Problems
نویسنده
چکیده
In two recent papers, Facchinei 7] and Facchinei and Kanzow 8] have shown that for a continuously diierentiable P 0-function f , the nonlinear complementarity problem NCP(f ") corresponding to the regularization f " (x) := f (x) + "x has a unique solution for every " > 0, that dist (x("); SOL(f)) ! 0 as " ! 0 when the solution set SOL(f) of NCP(f) is nonempty and bounded, and NCP(f) is stable if and only if the solution set is nonempty and bounded. They prove these results via the the Fischer function and the Mountain Pass Theorem. In this paper, we generalize these NCP results to a Box Variational Inequality Problem corresponding to a continuous P 0-function where the regularization is described by an integral. We also describe an upper semicontinuity property of the inverse of a weakly univalent function and study its consequences.
منابع مشابه
Vector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملA Descent Method for Nonsmooth Variational Inequalities via Regularization
in this paper we propose a descent method for solving variational inequality problems where the underlying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz, and strongly monotone, with the Tikonov-Browder regularization technique....
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997